LCD缺陷检测系统的图像压缩感知方法

冯奇, 黄建军, 张源, 赵斌

冯奇, 黄建军, 张源, 赵斌. LCD缺陷检测系统的图像压缩感知方法[J]. 信号处理, 2018, 34(1): 72-80. DOI: 10.16798/j.issn.1003-0530.2018.01.009
引用本文: 冯奇, 黄建军, 张源, 赵斌. LCD缺陷检测系统的图像压缩感知方法[J]. 信号处理, 2018, 34(1): 72-80. DOI: 10.16798/j.issn.1003-0530.2018.01.009
FENG Qi, HUANG Jian-jun, ZHANG Yuan, ZHAO Bin. An Image Compressive Sensing Method for LCD Mura Detection System[J]. JOURNAL OF SIGNAL PROCESSING, 2018, 34(1): 72-80. DOI: 10.16798/j.issn.1003-0530.2018.01.009
Citation: FENG Qi, HUANG Jian-jun, ZHANG Yuan, ZHAO Bin. An Image Compressive Sensing Method for LCD Mura Detection System[J]. JOURNAL OF SIGNAL PROCESSING, 2018, 34(1): 72-80. DOI: 10.16798/j.issn.1003-0530.2018.01.009

LCD缺陷检测系统的图像压缩感知方法

基金项目: 广东省科技计划项目(2016B090918084);深圳市科技计划项目(JCYJ2017030215011535)
详细信息
  • 中图分类号: TN911.73

An Image Compressive Sensing Method for LCD Mura Detection System

  • 摘要: 图像采集是液晶显示屏(LCD)缺陷检测系统的关键步骤,而高清屏图像的大数据量给检测系统的实时数据采集、传输和处理造成了很大压力。为解决这一问题,本文提出了一种先行压缩采样后列压缩采样的压缩感知方法,并给出了一种LCD缺陷图像的压缩感知电路实现方案,该电路主要由压缩采样、控制、图像转置存储等模块组成。这种方法充分考虑了图像整体的稀疏性,提高了压缩效率,且结构简单,易于硬件实现。在FPGA上的仿真实验验证了此方法的有效性。
    Abstract: Image acquisition is the key step in the LCD Mura detection system, but the large data of high-definition screen image may bring severe pressure on the detection system in real-time data acquisition, transmission and processing. To solve this problem, a compressive sensing method is proposed by applying the compressive sampling first in row and then in column. And an implementation of compressive sensing circuit for LCD Mura image is also presented, it consists of compressive sampling module, control unit and image transpose RAM, etc. This method takes a full consideration of the whole image sparsity, making it a more effective way of image compressive sampling. The structure of the circuit is simple and easy to implement. Experiments on FPGA show the effectiveness and efficiency of the proposed method.
  • [1] Li Yadong, Gu Peihua. Free-form surface inspection techniques state of the art review[J]. Computer-Aided Design, 2004, 36(13): 1395-1417.
    [2] Xie Xianghua. A review of recent advances in surface defect detection using texture analysis techniques[J]. Electronic Letters on Computer Vision and Image Analysis, 2008, 7(3):1-22.
    [3] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly imcomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    [4] D.Donoho. Compressed sensing. IEEE Transactions on information Theory,2006, 52(4): 1289-1306.
    [5] 李清勇, 梁正平, 黄雅平,等. 缺陷检测的稀疏表示模型及应用[J]. 计算机研究与发展, 2014, 51(9):1929-1935.
    [6] Li Qingyong, Liang Zhengping, Huang Yaping. The sparse representation model of defect detection and its application[J].Computer Research and Development, 2014, 51(9): 1929-1935. (in Chinese)
    [7] 王宪保, 章国琼, 姚明海. 稀疏编码改进方法及其在缺陷检测中的应用研究[J]. 小型微型计算机系统, 2017, 38(1):165-168.
    [8] WANG Xianbao,ZHANG Guoqiong,YAO Minghai. Improved Sparse Coding Method and its Application in Defect Detection[J]. Journal of Chinese Computer Systems, 2017, 38(1):165-168. (in Chinese)
    [9] 杨晓霞, 薛彬, 靳世久,等. 压缩传感在超声相控阵检测系统中的应用研究[J]. 电子测量与仪器学报, 2015, 29(9):1286-1294.
    [10] Yang Xiaoxia, Xue Bin, Jin Shijiu, et a1. Application study on compressed sensing in ultrasonic phased array detection system[J]. Journal of Electronic Measurement and Instrument, 2015, 29(9):1286-1294. (in Chinese)
    [11] 王辉, 孙洪. 鲁棒主成分分析的铝箔表面缺陷检测方法[J]. 信号处理, 2017,33(4): 577-582.
    [12] WANG Hui, SUN Hong. Robust Principal Component Analysis for Aluminum Foil Surface Defects Detection[J]. Journal of Signal Processing, 2017,33(4): 577-582. (in Chinese)
    [13] Chen S S, Donoho D L, Saunders M A. Atomic Decomposition by Basis Pursuit[J]. Siam Review, 2001, 43(1):129-159.
    [14] J A Tropp, A C Gilbert. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
    [15] Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied &Computational Harmonic Analysis, 2009, 26(3): 301-321.
    [16] Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing[J]. Applied & Computational Harmonic Analysis, 2009, 27(3): 265-274.
    [17] Kirolos S, Laska J, Wakin M, et al. Analog-to-Information Conversion via Random Demodulation[C]// Design, Applications, Integration and Software, 2006 IEEE Dallas/CAS Workshop on. IEEE, 2006:71-74.
  • 期刊类型引用(5)

    1. 罗文君,汪二虎. 基于候选区域对比度的显示屏缺陷检测方法. 工业控制计算机. 2022(05): 67-69 . 百度学术
    2. 张莉,周燕云,黄晓辉. 采用Qsys实现的时间管理系统. 现代电子技术. 2021(10): 15-18 . 百度学术
    3. 张芳慧,章春娥,张琳娜,岑翼刚,阚世超. 基于多尺度重叠滑动池化的SSD果冻杂质检测方法. 信号处理. 2020(11): 1811-1818 . 本站查看
    4. 张琳娜,岑翼刚. 铁轨图像的低秩矩阵分解缺陷检测. 信号处理. 2019(04): 667-675 . 本站查看
    5. 刘林威,王利,周国富,何文耀,李伟,邓勇,易子川. 一种液晶屏图像控制系统. 电子设计工程. 2019(22): 142-146+151 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  134
  • HTML全文浏览量:  3
  • PDF下载量:  836
  • 被引次数: 6
出版历程
  • 收稿日期:  2017-05-11
  • 修回日期:  2017-07-21
  • 发布日期:  2018-01-24

目录

    /

    返回文章
    返回