基于稀疏表示和外输入自回归模型的单次诱发电位提取方法

Single-trial Evoked Potentials Extraction with Sparse Representation and ARX

  • 摘要: 由于诱发电位信号的信噪比很小,因此诱发电位的单次提取一直是脑电信号处理领域的难题之一。稀疏表示在信号去燥方面是一个强大的工具,并且诱发电位已被证明在合适的稀疏字典上具有很强的稀疏性。本文提出了一种基于稀疏表示和外输入自回归模型的单次诱发电位提取算法。其中,诱发脑电信号提取的过程分为三个阶段。首先,该算法应用参考信号估计自发脑电的自回归模型参数;其次,在自回归移动平均模型中,应用稀疏表示替代移动平均模型对诱发电位进行建模;最后,利用稀疏系数和自回归模型参数重构诱发电位。通过仿真脑电信号和真实诱发电位信号进行实验验证,结果表明该算法具有较好的效果,与MOSCA和ARX方法相比,本文算法能够在低信噪比情况下进行潜伏期和幅度的估计。

     

    Abstract: The single-trial extracting of evoked potential (EPs) has become a vexed question in the process of electroencephalogram owing to the faint signal-to-noise ratio (SNR) of EP. Sparse reoresention is a powerful tool in signal denoising, and EPs have been proven to strong sparsity over an appropriate dictionary. In this paper, we present a novel sparse representation and autoregressive model with exogenous input modeling (ARX) approach to solving the EPs extraction problem. The extraction process of evoked potentials are performed in three stages. First, we utilize an reference ongoing spontaneous Electroencephalogram to identify the parameters?of?the autoregressive model. Second, instead of the moving average model, sparse representation is used to model the EP in the autoregressive-moving average model. Finally, we calculate the sparse coefficients and derive evoked potentials by using the autoregressive model. Utilizing the synthetic EEG data and real visual evoked potentials data to estimate the performance of this method, our algorithms has?been proven highly?effective in the experiment results. Comparing with MOSCA and ARX, our method can estimate the latency and amplitude accurately, even in low SNR environments.

     

/

返回文章
返回