利用局部密度与距离特征的MFSK识别方法

MFSK Signal Recognition Method Based on the Feature of  Local Density and Distance

  • 摘要: 针对不能在没有先验信息的条件下对任意调制指数的MFSK信号进行调制识别的问题,提出了一种新的利用聚类特征的MFSK信号调制识别方法。该方法利用AR模型的极点提取信号的短时频率峰值;应用改进的聚类算法对峰值序列进行聚类处理;根据不同阶数FSK信号不同聚类中心特征参数的不同,利用支持向量机进行分类,完成了2FSK、4FSK、8FSK和16FSK的调制识别。该算法无需任何先验知识,适用于不同调制指数下的FSK信号,仿真实验验证了算法的有效性和正确性。

     

    Abstract: This paper solved a problem that any MFSK signal modulation index couldn’t be recognized if there wasn’t any prior information. It proposed a novel signal modulation recognition method which was based on the clustering characteristics of MFSK. First, extracted the short-term peak frequency of the signal by using the pole of AR model; and then, clusterde the peak sequence by using the improved clustering algorithm; finally, according to the FSK signals in the different characteristic parameters in different clustering centers, classify by supporting vector machine to complete the modulation recognition of 2、4、8、16FSK. This algorithm doesn’t need any priori knowledge and fits the FSK signals of different modulation indexs. The simulation experiment proves the algorithm effectively and correctly.

     

/

返回文章
返回