运动多平台无源跟踪截尾不敏卡尔曼滤波算法

骆卉子, 曲长文, 冯奇

骆卉子, 曲长文, 冯奇. 运动多平台无源跟踪截尾不敏卡尔曼滤波算法[J]. 信号处理, 2016, 32(12): 1434-1439. DOI: 10.16798/j.issn.1003-0530.2016.12.007
引用本文: 骆卉子, 曲长文, 冯奇. 运动多平台无源跟踪截尾不敏卡尔曼滤波算法[J]. 信号处理, 2016, 32(12): 1434-1439. DOI: 10.16798/j.issn.1003-0530.2016.12.007
LUO Hui-zi, QU Chang-wen, FENG Qi. Truncated Unscented Kalman Filtering Algorithm for Target Tracking Using Moving Multi-platform[J]. JOURNAL OF SIGNAL PROCESSING, 2016, 32(12): 1434-1439. DOI: 10.16798/j.issn.1003-0530.2016.12.007
Citation: LUO Hui-zi, QU Chang-wen, FENG Qi. Truncated Unscented Kalman Filtering Algorithm for Target Tracking Using Moving Multi-platform[J]. JOURNAL OF SIGNAL PROCESSING, 2016, 32(12): 1434-1439. DOI: 10.16798/j.issn.1003-0530.2016.12.007

运动多平台无源跟踪截尾不敏卡尔曼滤波算法

基金项目: 泰山学者建设工程专项经费资助
详细信息
    通讯作者:

    骆卉子   E-mail: jessica_lhz@163.com

  • 中图分类号: TN958.97

Truncated Unscented Kalman Filtering Algorithm for Target Tracking Using Moving Multi-platform

More Information
    Corresponding author:

    LUO Hui-zi   E-mail: jessica_lhz@163.com

  • 摘要: 针对已有非线性滤波算法用于运动多平台无源跟踪时精度不高的问题,提出了一种新的跟踪算法即截尾不敏卡尔曼滤波(TUKF)算法以改善跟踪性能。该算法对状态先验概率密度函数及测量噪声概率密度函数进行截尾处理,使其变为具有有界支撑集的函数,并在此基础上结合原始状态先验概率密度函数设计了混合先验概率密度函数,然后针对其中的两种先验概率密度函数,分别应用不敏变换计算对应的后验概率密度函数的前两阶矩信息,并对其进行融合处理得到最终状态估计。仿真结果表明相对于几种典型的非线性滤波算法,TUKF算法能有效改善跟踪性能。
    Abstract: In order to solving the low precision problem of exsiting nonlinear filtering algorithms when used for moving multi-platform passive tracking, a truncated unscented Kalman filtering(ITUKF) is poposed. The proposed algorithm truncates the probability density function (PDF) of the measurement noise and the prior PDF of the state to make them have a bounded support. Combing with the original prior PDF of the state, a mixture prior PDF of the state is designed. The unscented transformation (UT) is applied to each of the prior PDF to calculate first two moments of the corresponding posterior PDF and then these moments are merged to form the final state estimation. Simulation results indicate that compared with several typical nonlinear filtering algorithms, the TUKF algorithm can effectively improves the tracking performance.
  • [1] 郁春来, 张元发, 万方. 无源定位技术体制及装备的现状与发展趋势[J]. 空军雷达学院学报, 2012, 26(2): 79-85.
    [2] Yu C L, Zhang Y F Wan F. Actuality and development trend of passive location technical system and equipment [J]. Journal of Air Force Radar Academy, 2012, 26(2): 79-85.(in Chinese)
    [3] Datta Gupta S, Yu J Y, Mallick M, et al. Comparison of angle-only filtering algorithms in 3D using EKF, UKF, PF, PFF, and ensemble KF[C]// International Conference on Information Fusion. Washington, DC: IEEE, 2015:1649-1656.
    [4] Julier S, Uhlmann J, Durrantwhyte H. A new method for the nonlinear transformation of means and covariances in filters and estimators [J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
    [5] 张文, 孙瑞胜. EKF与UKF的性能比较及应用[J]. 南京理工大学学报, 2015(5):614-618.
    [6] Zhang W, Sun R S. Research on performance comparison of EKF and UKF and their application[J]. Journal of Nanjing University of Science and Technology, 2015(5):614-618. (in Chinese)
    [7] 赵知劲, 吴棫. OFDM时变信道的粒子流滤波估计算法[J]. 信号处理, 2016, 32(2): 244-251.
    [8] Zhao Z J, Wu Y. The estimation algorithm of OFDM time-varying channel using particle flow filtering[J]. Signal Processing, 2016, 32(2): 244-251. (in Chinese)
    [9] Duník J, ?imandl M, Straka O. Unscented Kalman filter: aspects and adaptive setting of scaling parameter [J]. IEEE Transactions on Automatic Control, 2012, 57(9): 2411-2416.
    [10] Wang Y, Liu J, Yang W, et al. A heuristic for sigma set selection of UKF[C]// 2014 12th International Conference on Signal Processing (ICSP). Hangzhou: IEEE, 2015:72-77.
    [11] Menegaz H M T, Ishihara J Y, Borges G A, et al. A systematization of the unscented Kalman filter theory[J]. IEEE Transactions on Automatic Control, 2015, 60(10):1-1.
    [12] Chang L B, Hu B Q, Qin F J. Transformed unscented Kalman filter[J]. IEEE Transactions on Automatic Control, 2013, 58(1): 252-257.
    [13] 刘江, 王玉金, 段建雷, 等. 基于高斯分布的多层无迹卡尔曼滤波算法[J]. 控制与决策, 2016,31(4):609-615.
    [14] Liu J, Wang Y J, Duan J L, et al. Multi-layer unscented Kalman filtering algorithm based on Gaussian distribution[J]. Control and Decision, 2016,31(4):609-615. (in Chinese)
    [15] 徐 征, 曲长文, 陈俊. 多机无源跟踪迭代UKF算法[J]. 系统工程与电子技术,2014,36(2):220-223.
    [16] Xu Z, Qu C W, Chen J. Iterated unscented Kalman filter algorithm for multi-plane passive tracking [J].System Engineering and Electronics, 2014,36(2):220-223. (in Chinese)
    [17] Li L, Xia Y. UKF-based nonlinear filtering over sensor networks with wireless fading channel [J]. Information Sciences, 2015, 316:132-147.
    [18] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3):401-422.
    [19] García-Fernández á F, Morelande M R, Grajal J. Nonliner filtering update phase via the single point truncated unscented Kalman filter[C]// IEEE International Conference on Information Fusion, Chicago: IEEE, 2011:1-8.
    [20] García-Fernández á F, Morelande M R, Grajal J. Truncated unscented Kalman filtering [J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3372-3386.
    [21] Li X Rong, Jilkov Vesselin P. Survey of maneuvering target tracking.Part I: Dynamic models [J]. IEEE Transactions on Aerospace and Electronics System, 2003, 39(4): 1333-1364.
    [22] 张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2004.
    [23] Zhang X D. Matrix analysis and application[M]. Tsinghua University Press,2004. (in Chinese)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  3
  • PDF下载量:  1031
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-10
  • 修回日期:  2016-08-24
  • 发布日期:  2016-12-24

目录

    /

    返回文章
    返回