嵌入式容积粒子PHD多目标跟踪算法

Imbedded Cubature Particle PHD Filter Multitarget Tracking Algorithm

  • 摘要: 针对基于概率假设密度算法(Probability Hypothesis Density,PHD)的非线性多目标跟踪估计精度不高、滤波发散、实时性差等问题,提出一种嵌入式容积粒子PHD算法(Imbedded Cubature Particle PHD,ICPPHD)。新的算法在采样阶段引入Halton点集,并基于三阶嵌入式容积准则产生有限的积分点,对每个采样粒子进行滤波,来拟合重要密度函数。由于Halton点集得到的粒子分布更加均匀,故而ICPPHD算法能够避免 “粒子聚集”的现象。另外,由于三阶嵌入式容积准则的积分点少、精度高,因此ICPPHD算法能更好的协调时间与精度之间的矛盾。仿真结果表明ICPPHD能对多目标进行有效跟踪,相比高斯厄米特粒子PHD算法(Gauss Hermite Particle PHD,GHPPHD)具有实时性强的优势,在目标数目和状态估计上比容积粒子PHD算法(Cubature Particle PHD,CPPHD)精度更高。

     

    Abstract: Considering the low accuracy, filter divergence and poor timeliness of nonlinear multitarget tracking based on probability hypothesis density (PHD), a new filter named imbedded cubature particle PHD(ICPPHD) is proposed. ICPPHD implements particle sampling with Halton points sets, and generates infinite integral points based on the thirddegree imbedded cubature rule to perform particle filtering for the purpose of matching the important density function. As a result of the welldistributed particles obtained with Halton sets, ICPPHD can avoid the phenomenon of particle aggregation. Besides, ICPPHD can deal with the contradictions between time and accuracy well because of the few integral points and high accuracy. Simulation was made and it showed that ICPPHD could be able to track multiple targets effectively. Moreover, ICPPHD spent less time compared with Gauss Hermite, and performed better in targets number estimation and state estimation comparing with cubature particle PHD(CPPHD).

     

/

返回文章
返回