基于UW帧结构的无人机地空数传信道均衡设计

Channel Equalization Design for UAV Ground-to-Air Data Transmission Based on Unique Word Frame Structure

  • 摘要: 分析了现有单载波频域均衡(Single-Carrier Frequency Domain Equalization,SC-FDE)系统均衡算法的优缺点,提出了一种基于独特字(Unique Word,UW)帧结构的无人机地空数传信道均衡算法。首先,该算法设计了基于零填充(Zero Padding,ZP)的数据帧结构,选取Golay互补序列对(Golay Complementary Pair,GCP)作为UW训练序列;随后,采用时域自相关信道估计算法完成信道估计,通过自适应滤波器优化信道估计结果,利用最大似然(Maximum Likelihood,ML)信噪比估计算法并结合UW训练序列实现当前数据帧的信噪比估计;最后,根据信噪比估计结果和最小均方误差均衡(Minimum Mean Square Error Equilibrium, MMSE)算法完成信道频域均衡。仿真结果表明,该算法在信噪比5 dB,调制方式为正交相移键控(Quadrature Phase-Shift Keying,QPSK)和16正交幅度调制(16 Quadrature Amplitude Modulation,16QAM)条件下的星座图更加收敛,星座间干扰点更少,在误码率10-5时相比传统的均衡算法信噪比大约有1.8 dB的性能增益。

     

    Abstract: This paper analyzes the advantages and disadvantages of existing equalization algorithms for single-carrier frequency domain equalization (SC-FDE) systems and proposes a channel equalization algorithm for UAV ground-to-air data transmission based on a unique word (UW) frame structure. The algorithm features a zero padding (ZP) based data frame structure with Golay complementary pair (GCP) sequences as UW training sequences. A time-domain autocorrelation channel estimation method is employed to obtain channel state information, followed by adaptive filtering to refine the estimation results. The maximum likelihood (ML) signal-to-noise ratio (SNR) estimation algorithm, combined with UW training sequences, enables real-time SNR estimation for the current data frame. Finally, frequency-domain channel equalization is implemented using the minimum mean square error (MMSE) criterion based on the SNR estimation results. Simulation results demonstrate that the proposed algorithm achieves more convergent constellation diagrams with fewer inter-symbol interference points under quadrature phase-shift keying (QPSK) and 16 quadrature amplitude modulation (16QAM) at 5 dB SNR. Compared with traditional equalization methods, it exhibits approximately 1.8 dB performance gain at a bit error rate (BER) of 10-5.

     

/

返回文章
返回