基于时空特征融合与注意力机制的多目标航迹预测算法

Multi-Target Trajectory Prediction Algorithm Based on Spatiotemporal Feature Fusion and Attention Mechanism

  • 摘要: 在雷达多目标跟踪中,运动模型的鲁棒性将直接影响最终的跟踪性能。随着跟踪环境的日益复杂,弱约束非合作目标跟踪易出现目标相互遮挡、量测丢失、目标运动路径无约束等预测难点。针对弱约束非合作目标的运动模型构建问题,本文提出了RPN-AT-ConvLSTMT(Region Proposal Net-attention-ConvLSTM-Transformer)时空特征提取预测网络。首先,使用协方差和均值将一维雷达量测扩展到二维概率假设密度(Probability Hypothesis Density, PHD)图,实现对目标存在区域的概率化表征。其次,针对多目标跟踪的搜索区域大的问题,对图像进行多尺度特征变换、重点区域标注等预处理操作,确定跟踪的局部范围或者搜索区域以减少网络对于非相关区域的关注度。进一步地,设计一种基于区域建议网络(Region Proposal Network, RPN)的改进型多头注意力机制,通过高斯分布特性、目标运动先验及交互关系动态重构注意力权重矩阵,保证全局与局部之间的动态平衡,提高注意力机制对于存在目标区域或目标运动区域的关注度,利用Transformer编码器的并行化架构实现时空特征的深度融合与高效传递。最后,使用反向传播(Back Propagation,BP)神经网络提取出预测PHD图的高斯分布均值和协方差,完成目标状态估计。消融实验验证了注意力机制与时空融合模块的有效性。多目标跟踪仿真结果表明,在遮挡与量测丢失场景下,所提算法相较于卷积长短时记忆网络(Convolutional Long Short-Term Memory,ConvLSTM)显著提升了跟踪精度,为弱约束非合作目标跟踪提供了高鲁棒性解决方案。

     

    Abstract: In radar multi-target tracking, the robustness of the motion model directly affects overall tracking performance. As the tracking environment becomes increasingly complex, weakly constrained, non-cooperative target tracking is prone to challenges such as target occlusion, measurement loss, and unpredictable target motion paths. This paper proposes a region proposal net-attention-convLSTM-transformer (RPN-AT-ConvLSTMT) spatiotemporal feature extraction and prediction network for constructing motion models of weakly constrained, non-cooperative targets. First, one-dimensional radar measurements are extended into a two-dimensional Probability Hypothesis Density (PHD) map using covariance and mean. This enables a probabilistic representation of the regions where targets may exist. To address the challenge of large search areas in multi-target tracking, preprocessing operations such as multi-scale feature transformation and key area annotation are applied to the image. These steps help identify local regions or search areas for tracking and reduce the network’s focus on irrelevant regions. Furthermore, an improved multi-head attention mechanism based on the Region Proposal Net (RPN) is designed. This mechanism dynamically reconstructs the attention weight matrix using Gaussian distribution characteristics, target motion priors, and interaction relationships. It ensures a dynamic balance between global and local regions, enhancing the attention mechanism’s focus on target-relevant areas. The parallel architecture of the Transformer encoder enables deep fusion and efficient transmission of spatiotemporal features. Finally, a BP (Back Propagation) neural network is employed to extract the Gaussian distribution’s mean and covariance from the predicted PHD map, completing the target state estimation. Ablation experiments verify the effectiveness of the proposed attention mechanism and spatiotemporal fusion module. Simulation results in multi-target tracking scenarios demonstrate that the proposed algorithm significantly improves tracking accuracy compared to the ConvLSTM method, particularly in cases of occlusion and measurement loss, offering a robust solution for weakly constrained, non-cooperative target tracking.

     

/

返回文章
返回