基于Nesterov动量加速的ADMM译码算法

ADMM Decoding Algorithm Based on Nesterov Momentum Acceleration

  • 摘要: 交替方向乘子法(Alternating Direction Method of Multiplier,ADMM)因具有线性规划(Linear Programming,LP)译码条件约束的几何结构,同时利用了消息传递机制,被认为是一种第5代移动通信技术(5thGeneration Mobile Communication Technology,5G)低密度校验(Low Density Parity Check,LDPC)码新型优化译码算法。通过在LP译码模型的目标函数中引入惩罚项,基于ADMM的变量节点惩罚译码有效地减轻了非积分解,从而提高了误帧率(Frame Error Rate,FER)性能。尽管ADMM在许多实际应用中表现出色,其收敛速度较慢以及对初始条件和参数设置敏感的问题仍然限制了其在高维、实时性要求高的场景中的进一步应用。特别是在LDPC线性规划译码过程中,ADMM的交替更新机制容易导致优化路径振荡,且在处理非精确约束时表现不佳。针对ADMM算法收敛速度慢的问题,我们提出了一种新的优化算法,该算法将Nesterov动量加速方法与ADMM相结合,以解决ADMM对LDPC译码器错误修正能力和收敛效率的影响。算法通过动量项减少迭代次数将一个Nesterov加速格式从无约束复合优化问题推广到ADMM惩罚函数模型,利用ADMM算法将原问题的约束条件有效转化为目标函数的一部分,从而构造出无约束优化子问题;在此基础上,进一步采用Nesterov加速技术对梯度下降迭代过程进行改进,以提高收敛速度和求解精度。仿真实验使用了三种不同码率的5G LDPC短码。结果表明,相对于现有ADMM惩罚译码算法,所提出的基于动量加速的ADMM译码算法不仅有大约0.2 dB的信噪比增益,而且平均迭代次数也降低了20%左右,加快了收敛速度。

     

    Abstract: The alternating direction method of multipliers (ADMM) algorithm has emerged as an innovative decoding solution for 5G low-density parity-check (LDPC) codes, leveraging two key features: geometrically-aware processing of linear programming (LP) decoding constraints and efficient implementation of message passing mechanisms. By incorporating a penalty term into the objective function of the LP decoding model, ADMM-based variable node penalty decoding effectively mitigates non-integral decomposition, thereby enhancing frame error rate (FER) performance. Despite the strong performance of ADMM in various practical applications, its relatively slow convergence speed and sensitivity to initial conditions and parameter tuning hinder its effectiveness in high-dimensional and real-time demanding scenarios. In particular, during the LDPC linear programming decoding process, the alternating update mechanism of ADMM can result in oscillation along the optimization path and exhibit suboptimal performance when handling imprecise constraints. To address the issue of slow convergence of the ADMM algorithm, we proposed a new optimization algorithm that integrates Nesterov momentum acceleration with ADMM. This approach aims to mitigate the impact of the ADMM algorithm on the error correction performance and convergence speed of LDPC decoders. By introducing a momentum term, the algorithm reduces the number of iterations and extends Nesterov’s accelerated scheme from unconstrained composite optimization problems to the ADMM penalty function model. First, the ADMM algorithm was employed to effectively reformulate the constraints of the original problem as a component of the objective function, thereby transforming it into an unconstrained optimization subproblem. Building on this foundation, Nesterov acceleration technology was further used to enhance the gradient descent iteration process to improve both convergence speed and solution accuracy. Simulation experiments were conducted using three different rates of 5G LDPC short codes. Compared to existing ADMM-based penalty decoding algorithms, the proposed momentum-accelerated ADMM decoding algorithm achieved a signal-to-noise rate gain of approximately 0.2 dB and reduced the average number of iterations by approximately 20%, thereby accelerating the convergence speed.

     

/

返回文章
返回