基于RCS特性统计分布的编队无人机群目标运动状态识别

Recognition of Drone Formation Motions Based on Radar Cross Section Statistical Characteristics

  • 摘要: 针对无人机群目标运动状态进行分类识别,可以推断任务意图,为无人机群目标态势感知提供基础。该文基于旋翼无人机编队的实测飞行数据,开展了群目标雷达散射截面(Radar Cross Section, RCS)特性分析,获得典型无人机编队RCS特性在时间维度、频率维度的统计分布模型,为编队群目标的探测资源、识别流程等设计提供了目标特性基础。针对编队运动状态表征与分类问题,提出一种改进的梅尔频率倒谱系数(Mel Frequency Cepstral Coefficients, MFCC)特征提取方法,以实现RCS倒谱的参数化表征。在此基础上,利用混合高斯模型(Gaussian Mixture Model, GMM)和隐马尔可夫模型(Hidden Markov Models, HMM)对不同运动状态的RCS倒谱特征进行准确建模,揭示不同编队运动状态的规律差异。开展了四旋翼无人机编队目标飞行试验, X波段的HH、VV极化实测数据表明,该文方法对无人机群目标运动状态的识别正确率高于94%,利用单体无人机作为训练模板获得的群目标运动状态识别率高于89%,相关成果可为实际飞行任务过程中的目标识别应用以及未来无人机态势感知提供基础。

     

    Abstract: ‍ ‍Micro-drones with varying formations have garnered significant attention for applications in low-altitude airspace. This study focuses on the characterization and classification of formation motions in micro-drones. It analyzes the mean value, linear frequency spectral coefficient (LFSC), Mel frequency cepstral coefficient (MFCC), and modified MFCC of radar cross section (RCS) sequences corresponding to different micro-drone formations, along with their statistical distribution characteristics. We propose a modified hidden Markov model (HMM) that incorporates prior knowledge of feature distributions to classify these formations, enabling the motion state classification of micro-drone formations using limited training data from a single micro-drone. Experiments were conducted in the X band, utilizing both HH and VV polarizations, to assess the effectiveness of the proposed method. The classification results achieved an average accuracy of over 89%, demonstrating the model’s capability in differentiating between various formations and numbers of micro-drones.

     

/

返回文章
返回