明星辰, 王朝栋, 毛馨玉, 等.分布式无人机载 InSAR混合多基线相位解缠与高程反演技术[J]. 信号处理, 2024, 40(9): 1685-1695. DOI: 10.12466/xhcl.2024.09.010.
引用本文: 明星辰, 王朝栋, 毛馨玉, 等.分布式无人机载 InSAR混合多基线相位解缠与高程反演技术[J]. 信号处理, 2024, 40(9): 1685-1695. DOI: 10.12466/xhcl.2024.09.010.
MING Xingchen, WANG Chaodong, MAO Xinyu, et al. Distributed UAV-borne InSAR hybrid multi-baseline phase unwrapping and elevation inversion technology[J]. Journal of Signal Processing, 2024, 40(9): 1685-1695. DOI: 10.12466/xhcl.2024.09.010.
Citation: MING Xingchen, WANG Chaodong, MAO Xinyu, et al. Distributed UAV-borne InSAR hybrid multi-baseline phase unwrapping and elevation inversion technology[J]. Journal of Signal Processing, 2024, 40(9): 1685-1695. DOI: 10.12466/xhcl.2024.09.010.

分布式无人机载InSAR混合多基线相位解缠与高程反演技术

Distributed UAV-borne InSAR Hybrid Multi-baseline Phase Unwrapping and Elevation Inversion Technology

  • 摘要: 干涉合成孔径雷达技术(Interferometric Synthetic Aperture Radar, InSAR)作为地形测高的主要途径之一,可以获取地面场景的数字高程模型(Digital Elevation Model, DEM),实现复杂地貌的立体感知。分布式InSAR系统可以灵活改变构型,具备柔性基线的特性,突破单站多通道InSAR的基线限制,有利于提高高程反演的精度,满足不同地形的需求,在复杂地理测绘、资源勘测、侦察预警等方面具有重要应用前景。现存的分布式InSAR系统以星载编队为主,构型有较大的限制,针对机载系统的研究尚少且都以双站单基线为主,对复杂陡峭地形的反演精度较低,甚至无法适用。针对现有系统的缺陷,本文提出了基于混合基线的分布式多基线无人机载InSAR高程反演系统,并改进InSAR技术以适配提出的新型体制。本文首先介绍了分布式混合基线无人机载InSAR系统的几何构型,并推导了本系统高程反演的原理;然后对比现有系统,阐述了适配分布式系统构型的相位解缠的技术优势并推导其实现方法,从理论上论证了本文提出的灵活构型的干涉系统对于复杂陡峭场景的适用性;最后通过对仿真地形、真实山地地形的仿真实验,实现了分布式混合基线无人机载InSAR系统对地物目标场景的高程反演,验证了本系统技术的可行性;并通过与现有系统的对比分析,凸显了本系统在复杂地形高程信息反演方面的优越性。

     

    Abstract: ‍ ‍Interferometric synthetic aperture radar (InSAR) is a principal method for terrain height measurement, facilitating the acquisition of elevation data for ground targets and enabling the comprehensive three-dimensional perception of intricate terrain and topography. Owing to its flexible baseline characteristics, the distributed InSAR system can dynamically change the baseline configuration, breaking through the baseline limitations of single-station multi-channel InSAR. This adaptability caters to diverse terrains, enhancing the accuracy of elevation inversion and taking a prominent role in geographical mapping, resource survey, reconnaissance, and early warning. Presently, InSAR systems predominantly rely on spaceborne formations, limiting configuration significantly. Several studies have focused on airborne systems; however, the existing methods are predominantly based on two stations with a single baseline configuration, which exhibits low inversion accuracy, particularly for complex and steep terrains. In response to this shortcoming, we propose a distributed multi-baseline UAV-borne InSAR elevation inversion system based on hybrid baselines, along with improvements in InSAR technology to adapt to the proposed novel architecture. This study establishes the geometric configuration of the distributed multi-baseline UAV InSAR system and derives the principle underlying the elevation inversion of the system. Subsequently, the technical advantages of this system in phase unwrapping under flexible configuration scenarios are compared with those of existing systems, and its implementation method is derived. Theoretical arguments are presented to demonstrate the suitability of the proposed flexible configuration interferometric system for complex and steep scenarios. Finally, through simulation experiments conducted on both simulated terrain and real mountainous terrain, this study attained elevation inversion of ground object scenes using the distributed multi-baseline UAV-borne InSAR system, thereby validating the feasibility of the technology. Additionally, this study leveraged a comparative analysis with existing systems to highlight the superiority of the proposed system in terrain elevation information inversion for complex terrains.

     

/

返回文章
返回