卓娅玲, 李响, 左磊, 等. 面向大规模目标跟踪的相控阵雷达资源分配方法[J]. 信号处理, 2024, 40(9): 1608-1620. DOI: 10.12466/xhcl.2024.09.004.
引用本文: 卓娅玲, 李响, 左磊, 等. 面向大规模目标跟踪的相控阵雷达资源分配方法[J]. 信号处理, 2024, 40(9): 1608-1620. DOI: 10.12466/xhcl.2024.09.004.
ZHUO Yaling, LI Xiang, ZUO Lei, et al. Resource allocation method for phased array radars for large-scale target tracking[J]. Journal of Signal Processing, 2024, 40(9): 1608-1620. DOI: 10.12466/xhcl.2024.09.004.
Citation: ZHUO Yaling, LI Xiang, ZUO Lei, et al. Resource allocation method for phased array radars for large-scale target tracking[J]. Journal of Signal Processing, 2024, 40(9): 1608-1620. DOI: 10.12466/xhcl.2024.09.004.

面向大规模目标跟踪的相控阵雷达资源分配方法

Resource Allocation Method for Phased Array Radars for Large-scale Target Tracking

  • 摘要: 相比于传统雷达,相控阵雷达能够同时生成多个波束并灵活改变波束指向,被广泛应用于多目标跟踪领域。在大规模集群目标协同探测场景中,为支持后续节点对敌方目标进行火力拦截与打击的任务需求,相控阵雷达需要在规定时间内将空域内优先级更高的目标更快地跟踪至火控精度,然而若空域内目标数量过多,雷达探测资源有限,难以完成指定跟踪任务。为了解决这一问题,本文提出了一种面向大规模目标跟踪的相控阵雷达目标分配与功率联合优化算法。首先,推导出包含目标分配和功率优化的预测条件克拉美罗下界,并将其作为目标跟踪性能的衡量指标;随后,本文同时考虑跟踪容量和跟踪精度,以最大化满足跟踪精度的目标数量和最小化多目标优先级加权平均跟踪误差为优化目标,结合相控阵雷达系统资源,建立了大规模目标跟踪下的目标分配和功率联合优化模型,对目标分配变量和发射功率变量进行自适应联合优化配置。针对上述优化问题,本文采用两步分解法,将其分解为目标分配子问题和功率优化子问题,并结合激活函数对非平滑非凸的目标函数进行平滑近似。然后,利用谱投影梯度法进行求解。仿真实验验证了所提算法相较于传统算法在多个场景下均能在指定时间内更快速地将更多目标跟踪至指定精度。

     

    Abstract: ‍ ‍Compared to traditional radars, phased array radars can generate multiple beams simultaneously, flexibly change beam direction, and have been widely used for multi-target tracking. To support the task requirements of subsequent nodes intercepting and striking enemy targets in large-scale cluster target collaborative detection scenarios, phased array radars need to track higher-priority targets in the airspace to ensure faster fire control accuracy within a specified time. However, radar detection resources are limited when too many targets are in the airspace, making it difficult to complete the specified tracking task. Therefore, this study proposes a resource allocation algorithm for phased array radars under resource-constrained conditions to address this issue. First, we derived the Predicted Conditional Cramer-Rao Lower Bound (PC-CRLB), which included target allocation and power optimization, and used it as a metric for tracking accuracy. Subsequently, we considered the tracking capacity and accuracy, with the optimization objectives of maximizing the number of targets that meet the specified tracking accuracy and minimizing the weighted average tracking error of multiple targets. In addition to phased array radar system resources, a joint optimization model for target allocation and power under large-scale target tracking was established, and adaptive joint optimization configuration was performed for target allocation variables and transmission power variables. To solve this optimization problem, we employed a two-step decomposition method, breaking it down into target allocation and power optimization subproblems. We also used activation functions to smoothly approximate the non-smooth and non-convex objective functions. Then, we solved the problem using the spectral projected gradient method. Finally, the simulation experiments demonstrated that the proposed algorithm outperformed the compared algorithms in tracking more targets to the specified accuracy within a given time in various scenarios.

     

/

返回文章
返回